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1. Définir la grandeur qui doit étre optimisée. En général, cette grandeur doit étre une fonction f qui
peut dépendre de plusieurs variables ou parameétres.

[

. Déterminer les relations qui peuvent exister entre les différentes variables. Le but de cette opération
est de pouvoir éliminer autant de variables que possible.

3. Calculer les valeurs extrémales de la fonction f au moyen des méthodes des chapitres précédents.

4. Tester les solutions obtenues ci-dessus, et voir si celles-ci correspondent ou non au probléme posé.
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In(a)

1
a—z(a:c — 1)e™

zaresin(z) + V1 — 22
zarccos(z) — V1 — x?

zarctan(z) — 3 In(1 + z?)

— cos(z)
sin(x)

—In|cos(z)|

In | sin(z)|

zarccot(z) + 3 In(1 + 2?)

3 (z — sin(z) cos(x)) — cot(x)

3 (2 + sin(z) cos(z)) tan(z)
1 — cos(x)

tan(:z:) - W
1+ sin(x)

—cot(z) —x cos(z)

— cos(x) cos(x)
1 + sin(x) 1 —sin(z)
sin(x) —sin(z)
1 + cos(z) 1 — cos(z)

%m sin(ax) + 1 cos(ax)

1 1 .
—==Icoslar — sinlaxr
i cos(ar) + = sin(a) N

axr

a? +b?

ar

(asin(bx) — beos(bz)) (;W (acos(bx) + bsin(bz))

zarsinh(z) — Va2 +1

zarcosh(z) — Va2 — 1

rartanh(z) + 1 In(1 — 2?)

cosh(z)

sinh(z)

In ( cosh(z))

zarcoth(z) + 3 In(z? — 1)

ln|:1:+x/a:2—+a.|

. T
arcsin ( —
T

In |sinh(z)|
%zx/zz Fa+ gln |z + Va2 + q
1 2

Ez\/rz -z2 4 % arcsin (;)
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Relations entre fonctions trigonométriques d’un méme arc
a cos(a) | sin(a) | tan(a)
i o S ., sin(a) ' . cos(a)
cos*(a) +sin“(a) =1 tan(a) = e cot(a) = in(et) 0° 0 1 0 0
cot(a) = : } =1+ tan?(a) | — ,l =1+ cot?(a) m \/§ 1 \/g
tan(a) cos? () sin”(av) 30° — — — —
6 2 2 3
Relations entre fonctions trigonométriques de certains arcs 45° ™ \/_5 ﬁ i
4 2 2
cos(—a) = cos(a) sin(—a) = —sin(a) tan(—a) = — tan(a) 60° T 1 \/§ \/g
cos(m — o) = — cos(a) sin(7m — ) = sin(«) tan(m — a) = — tan(a) 3 2 2
cos(m + ) = — cos(a) sin(m + o) = —sin(a) tan(m + ) = tan(a) 90° g 0 1 -

cos (g - n) = sin(a)

cos (g + n) = —sin(a)

. ™

sin (— - a) = cos(a)
2

. ™

sin (5 + o) = cos(a)

Fonctions trigonométriques d’une somme et d’une différence d’arcs

tan (g - n') = cot(a)

- Triangle quelconque
tan (5 + (x) = — cot(a)

cos(a + ) = cos(a) cos(3) — sin(a) sin(3)

sin(a 4 ) = sin(a) cos(3) + cos(a) sin(B)

_ tan(a) + tan(B)
tan(a + 3) = m

cos(a — f3) = cos(a) cos(S3) + sin(a) sin(S3)

sin(a — ) = sin(a) cos(B) — cos(a) sin(3)

_ tan(a) — tan(B)
tan(a = B) = T an(o) tan(s)

Transformation d’une somme en produit

cos(a) + cos() = 2cos (

« -;— 3) o8 (a ; /3)
) en ()

sin(a + )

sin(a) + sin(8) = 2sin a

tan(a) + tan(5) =

cos(a) —cos(f) = —2sin (#

sin(a) — sin(3) = 2 cos <01 ;— 3) Al (a g d)
sin(a — f3)

tan(a) — tan(B) =

Théoréme du cosinus

a? = b + ¢ — 2becos(a)

b = a® + * — 2accos(3)

De.ﬂ / rad / grao\o.
d

cos(a) cos(/3) cos(av) cos(f3) . 4 ‘ o Z N g
acos(a) 4+ bsin(a) = Acos(a — @) avec A = v/a? + b2 et ¢ tel que cos(p) = % et sin(p) = % € =@ Fh = Jahoosly) 180 ™ 200
Fonctions trigonométriques du double et du triple d’un arc Théoréme du sinus
a b ¢
cos(2a) = cos?(a) — sin*(a) = 1 — 2sin*(a) = 2 cos?(a) — 1 ginle) sn(p) smiy)
_ _ (_) K] 1-cos(24)
sin(2a) = 2sin(a) cos(a) 5 (4) - | Transformation d’'un produit en somme
_ _2tan(a) 2 Vcos(24)
tan(2a) = T~ tan’(a) Cog (J.) < —— N

cos(a) cos(f) = = (cos(a+ ) + cos(a — j3))

cos(3a) = cos(a)(1 — 4sin*(a)) = cos(a) (4 cos*(a) — 3)

cos(a)sin(f) =

sin(3a) = sin(a) (4 cos*(ar) — 1) = sin(a) (3 — 4sin’(a)) (Sin(a + ) — sin(a — 3))
_ tan(a)(3 — tan®())

tan(3a) = —— 3tanl(a) sin(a) sin(f) =

[\7|*—‘[\D|I—‘[\3

(—cos(a + ) + cos(a — 3))

Fonctions trigonométriques de la moitié d’un arc

. . » . . » -~ L4 a
Fonctions trigonométriques exprimées a 1’aide de ¢ = tan <§>

cos? ((_1) _ 1+ cos(a) sin? ((_x) _1 — cos(a)

2 2 2 2
a 1 — cos(a) « 1 — cos(a) sin(a) s L= | 2 _ 2
tan? (_) _ t: (_) — — cos(a) sin(a) = tan(a) =
M\ 1+ cos(a) 2 sin(a) 1+ cos(a) L+ 1+ - "
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Fonctions hyperboliques
T _ e~ T T —z T __ o,—T 1
sinh(z) = e 26 cosh(z) = e“+e () o= ZI - Z—I coth(z) = tanh(z)
inh 1
cosh?(x) — sinh?*(z) = 1 tanh(z) = :;r;h((z)) prs T =1 — tanh®(x)
sinh(—z) = —sinh(z) cosh(—z) = cosh(z) tanh(—z) = — tanh(z)
sinh(z +y) = sinh(z) cosh(y) + cosh(z) sinh(y) sinh(2z) = 2sinh(z) cosh(z)
cosh(z +y) = cosh(z)cosh(y) + sinh(z) sinh(y) cosh(2z) = sinh*(x) + cosh?(z)
~ tanh(z) + tanh(y) _ 2tanh(x)
tanh(z +y) = 1 + tanh(z) tanh(y) tanh(2z) = 1 + tanh?(x)
.o (T\ _cosh(z)—1 o (T) _ cosh(z) +1 z\ _cosh(z) =1  sinh(z)
sinh (5) N 2 cosh (5) N 2 g tanh (2) ~ sinh(z)  cosh(z) +1
1
Formule de Moivre (cosh(z) + sinh(z))" = cosh(nz) + sinh(nz) ¥ g2 (x) = CDSL\(#
smhd(X) = cox (21
Fonction réciproque des fonctions hyperboliques 2
zeR arsinh(z) =y < =z =sinh(y) |y€R
g arcosh(z) =y << x=cosh(y) | y>0
—l<z<1 artanh(r) =y < =z =tanh(y) |yeR
z<—louz>1|arcoth(z)=y < x=-coth(y) |y#0
arsinh(z) = In (z 4+ V22 + 1) arcosh(z) = In (z 4+ V22 — 1)
1
artanh(z) = 1In (1 fi) arcoth(z) = $1In <i f 1)

A



Représentation graphique de quelques fonctions

2+ sinh(z)

z +— arsinh(z)

z > z? T 2?
1 1
1 1 1
il
1
1
x +— cosh(z) z + arcosh(z)
T T T T
IV,
1 ’/4 1 1
1
1 P P
x> |zl T = 1
x
1 z > tanh(z) x + artanh(z)
: : :
1 Lodl
1 | |
‘ . ‘ ‘ . , | |
l 1 | :1
x > sgn(z) ez | , |
z +— coth(z) z +— arcoth(z)
il : L
I § B i1k
N U PR
T e x — In(z) ¥ | ¢
1 '
1 Quelques limites
1 On note n un entier naturel, a et b des nombres réels positifs et  un nombre réel.
I " . i . i 1\7
z > sin(z) z +— arcsin(z) s oo =6 nig}oo\/a =1 ®E=0 nlg}oo(l + E) =
T B
1 i lim a" =0 si0<a<1| lim {m=1 lim (1+—> — e
\ ‘ . q n—+00 n—+o00 n—-+o00 n
}» } h e o
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