Notations

A

Logs

Equations

Inequations

Geometry

Trigonometry and tables

Hyperbolic functions

Circle and sphere equations

Graphical representation of common functions

Various tables

Python resources

import matplotlib.pyplot as plt
import numpy as np
import os 
 
os.chdir(VAULT_PATH)
 
# 2. GENERATE DATA
x = np.linspace(-2, 2, 100)
y = x**3
 
# 3. CREATE PLOT
fig, ax = plt.subplots(figsize=(5, 6))
 
# Center the axes (Spines)
ax.spines['left'].set_position('zero')
ax.spines['bottom'].set_position('zero')
 
# Hide the top and right borders
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
 
# Add arrow-like ticks or just clean ticks
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
 
# 4. PLOT THE LINE
# 'midnightblue' or '#002673' matches the dark blue in your image
ax.plot(x, y, color='#002673', linewidth=2.5, label=r'$x \to x^3$')
 
# 5. STYLING THE LEGEND
# Use LaTeX formatting by wrapping in $ signs
ax.legend(loc='upper right', frameon=True, fontsize=12)
 
# Set specific limits to make it look balanced
ax.set_xlim([-2.2, 2.2])
ax.set_ylim([-8.5, 8.5])
 
# Optional: Add specific labels for 1 and -1 to match the image
plt.xticks([-2, -1, 1, 2])
plt.yticks([-5, 5])
 
# 6. SAVE AND EXPORT
filename = "cubic_function.svg"
plt.savefig(filename, transparent=True, bbox_inches='tight')
plt.close()
 
# 7. RENDER IN OBSIDIAN/QUARTZ
print(f"![[{filename}]]")