Notations
A
Logs
Equations
Inequations
Geometry
Trigonometry and tables
Hyperbolic functions
Circle and sphere equations
Graphical representation of common functions
Various tables
Python resources
import matplotlib.pyplot as plt
import numpy as np
import os
os.chdir(VAULT_PATH)
# 2. GENERATE DATA
x = np.linspace(-2, 2, 100)
y = x**3
# 3. CREATE PLOT
fig, ax = plt.subplots(figsize=(5, 6))
# Center the axes (Spines)
ax.spines['left'].set_position('zero')
ax.spines['bottom'].set_position('zero')
# Hide the top and right borders
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
# Add arrow-like ticks or just clean ticks
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
# 4. PLOT THE LINE
# 'midnightblue' or '#002673' matches the dark blue in your image
ax.plot(x, y, color='#002673', linewidth=2.5, label=r'$x \to x^3$')
# 5. STYLING THE LEGEND
# Use LaTeX formatting by wrapping in $ signs
ax.legend(loc='upper right', frameon=True, fontsize=12)
# Set specific limits to make it look balanced
ax.set_xlim([-2.2, 2.2])
ax.set_ylim([-8.5, 8.5])
# Optional: Add specific labels for 1 and -1 to match the image
plt.xticks([-2, -1, 1, 2])
plt.yticks([-5, 5])
# 6. SAVE AND EXPORT
filename = "cubic_function.svg"
plt.savefig(filename, transparent=True, bbox_inches='tight')
plt.close()
# 7. RENDER IN OBSIDIAN/QUARTZ
print(f"![[{filename}]]")